
Top and Electroweak Physics TeV4LHC experiment & phenomenology & theory

Evelyn J. Thomson University of Pennsylvania September 17 2004

Motivation

- Fundamental parameters of Standard Model
- Sensitive to Higgs mass and new physics through radiative corrections
 - Precision measurements
 - Theory challenges
- Standard Candles for detector calibration
 - Lepton identification
 - Energy/Momentum scale
 - Luminosity
- Backgrounds to many new physics signals

Outline

- Accelerators powerful enough to produce W, Z, top
 - Status
- W and Z physics
 - W and Z production cross-section
 - W charge asymmetry
 - W mass
- Top physics
 - Top production cross-section
 - Top decays
 - Top mass
- Standard Model (and beyond) global fit

More details
P. Murat
A. Juste
Top/EWK Thursday

Accelerators: The Decade of the Hadron Collider

Physics at a hadron collider

<u>is like:</u>

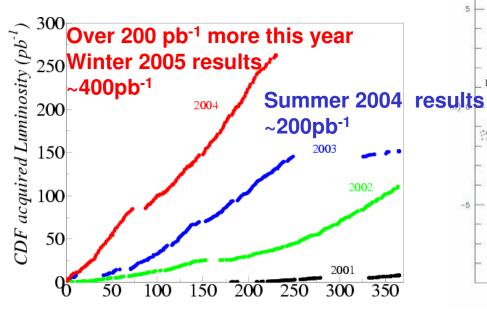
- Drinking from a firehose
 - Collision rate huge
 - Tevatron every 396 ns
 - LHC every 25 ns
 - Total cross section huge ~0.1b
 - 2-3 interactions per collision
 - Tevatron L=10³²cm⁻²s⁻¹
 - LHC initial/low lumi
 L=10³³cm⁻²s⁻¹
 - 20 interactions per collision
 - LHC design/high lumi
 L=10³⁴cm⁻²s⁻¹
- Panning for gold
 - W, Z, top are relatively rare
 - Need high luminosity
 - Trigger is crucial
 - Distinguish using high p_T leptons

TeVatron Performance

Collider Run II Peak Luminosity

Peak luminosity

- x2 increase since 2003
- Reached L=10³²cm⁻²s⁻¹
- Future
 - Run until 2009
 - Deliver 4-9 fb⁻¹



6

TeVatron Experiments

Top & Electroweak Physics need
Trigger
Electron/Muon/Tau identification
Tracking and b tagging
Calorimetry

W and Z Physics

Standard Candles

at Tevatron and LHC

W/Z cross-sections → W width

W/Z asymmetries

W mass

WW, WZ, ZZ, Wy, Zy

Trigger on leptonic decays at Tevatron and LHC

Clean event signatures with low background

BR~11% per mode for W \rightarrow ℓ v BR~3% per mode for Z \rightarrow ℓ + ℓ -

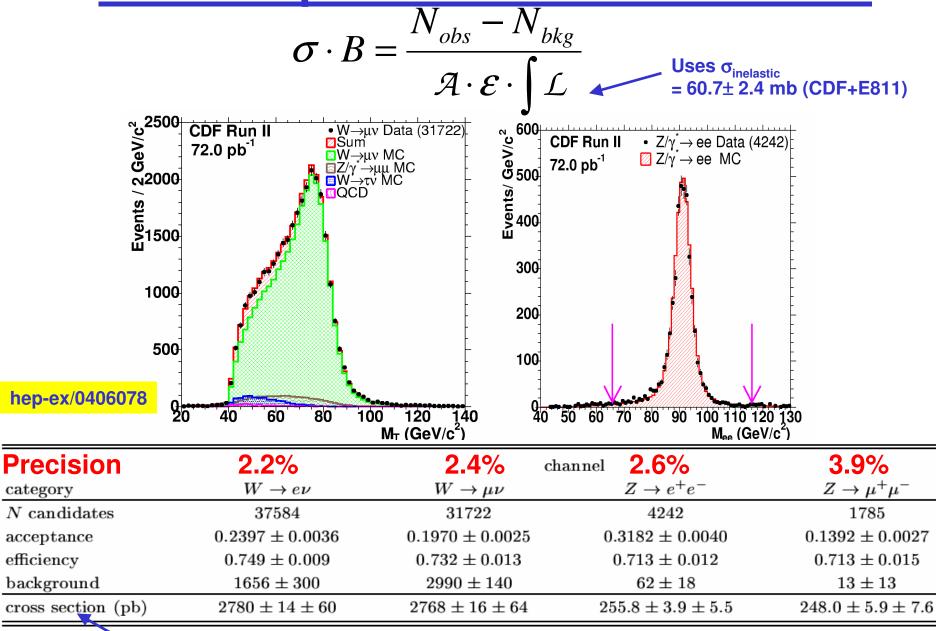
CDF(D0) W and Z Event Selection

W→ev

1 electron E_T>25 GeV, $|\eta|$ < 2.8(1.1) High MET> 25 GeV

 $W \rightarrow \mu v$

1 muon $p_T>20$ GeV, $|\eta|<1.0(1.5)$ High MET>20 GeV



 $Z^0 \rightarrow e^+e^-$ 2 electrons $E_T > 20$ GeV

 $Z^0 \rightarrow \mu^+ \mu^-$ 2 muons p_T>20(15) GeV

W and Z production cross section

A: geometric and kinematic acceptance

- Key quantity is boson rapidity, y
- Calculate $\mathcal{A}(y)$ from PYTHIA with GEANT detector simulation
 - Dominant systematics
 - **■** E_T,P_T scale <0.4%
 - Detector material < 1%
- Convolve with NNLO differential cross-section
 - First complete NNLO computation of a differential quantity for high energy hadron collider physics
 - Powerful new calculation
 - Applicable to many observables
 - Important for LHC
- Dominant ${\mathcal A}$ systematic
 - PDFs CTEQ6M (0.7-2.1%)

Experiment vs theory

- Precision measurements vs precision NNLO predictions
 - Theoretical uncertainty 2%
 - Experimental uncertainty 2%
 - Luminosity uncertainty 6%
- Future: instead use W and Z as a luminosity monitor at LHC

S. Frixione, M. Mangano hep-ph/0405130

NNLO evolution: Moch, Vermaseren, Vogt

NNLO W,Z corrections: van Neerven et al. with Harlander, Kilgore corrections

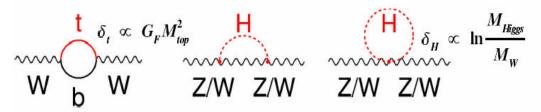
PDFs at LHC

LHC-HERA workshop on PDFs

Tevatron parton kinematics

LHC parton kinematics

W charge asymmetry



Constrain PDFs at large x with Tevatron data

- u quark carries more of proto momentum than d quark
 - W+ boosted along proton beam direction
 - W-boosted along anti-proton beam direction
- W charge asymmetry sensitive to u/d quark ratio at large x
 - Count e⁺ and e⁻ vs η
 - High E_T sensitive to PDFs
 - Calorimeter- seeded Silicon tracking for electrons with |η|>1, charge mis-id < 2%
- At LHC? Total W+/W- ratio probes (u dbar) / (ubar d) ratio

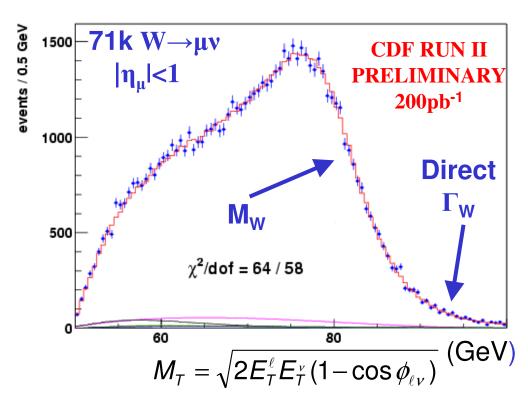
Standard Model prediction for W mass

Radiative corrections make W mass sensitive to top and Higgs mass

Recent theoretical calculation of full two-loop electroweak corrections

$$M_W^2 \left(1 - \frac{M_W^2}{M_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2} G_\mu} \left(1 + \Delta r \right)$$

Standard Model prediction for W mass dominated by error on top mass



hep-ph/0311148

	Experiment	Prediction
	δM_{top}	δM_W
	(GeV)	(MeV)
Now	4.3	26
TeV	2.5	15
LHC	1.3	8
LC	0.1	-

Experimental measurements of W mass

Tevatron/LHC

Measure W mass from fit to

- W Transverse mass
 - Hadronic recoil model
- Muon P_T or electron E_T
 - W p_T model

Run II fit results are still blinded!

Statistical error 50 MeV per channel

Dominant systematic uncertainty from lepton energy/momentum scale and resolution

- Most time and effort spent on detector calibration
- This is a very difficult and demanding measurement

C. Hays Top/EWK Thursday

Run 1 W mass Systematic Uncertainties

Combined Run I uncertainty 59 MeV

How do we reach 40 MeV per channel per experiment in Run II? And 15 MeV per experiment at LHC?

Most of the systematics are statistics-limited...get smarter with more data!

Theory uncertainties important above 1 fb⁻¹

TeVatron Run 1	CDF W→μν	CDF W→ev	D0 W→ev
W statistics	100	65	60
Lepton Energy scale	85	75	56
Lepton resolution	20	25	19
Selection bias	18	-	12
Backgrounds	25	5	9
Recoil model	35	37	35
PT(W)	20	15	15
PDFs	15	15	8
QED corrections	11	11	12
Γ_{W}	10	10	10

Lepton Energy scale

Some advantages to a hadron collider – many calibration samples!

And uncertainties decrease with higher statistics

Muon momentum scale/resolution use J/ψ , Y cross-check with $Z{\to}\mu^+\mu^-$ Preliminary syst. 30 MeV !!! (87)

Electron energy scale/resolution use E/p in W→ev cross-check with Z→e+e-Preliminary syst. 70 MeV (70)

Accurate model of detector material important due to electron bremsstrahlung Source of 55 MeV uncertainty

ATLAS/CMS take note!

QCD & QED corrections

U. Baur P. Nadolsky Top/EWK Thursday

- QED radiative corrections
- C. Calame et al hep-ph/0402235
- Multiple QED radiation
- W. Placzek, S Jadach Eur.Phys.J.C29:325-339,2003
- QCD+QED(FSR) in RESBOS-A
 Q. Cao, C.P.Yuan hep-ph/0401026
- Transverse momentum resummation at small-x?
 - TeVatron may be visible at high rapidity
 - LHC important everywhere

S. Berge et al., hep-ph/0401128 DPF parallel session

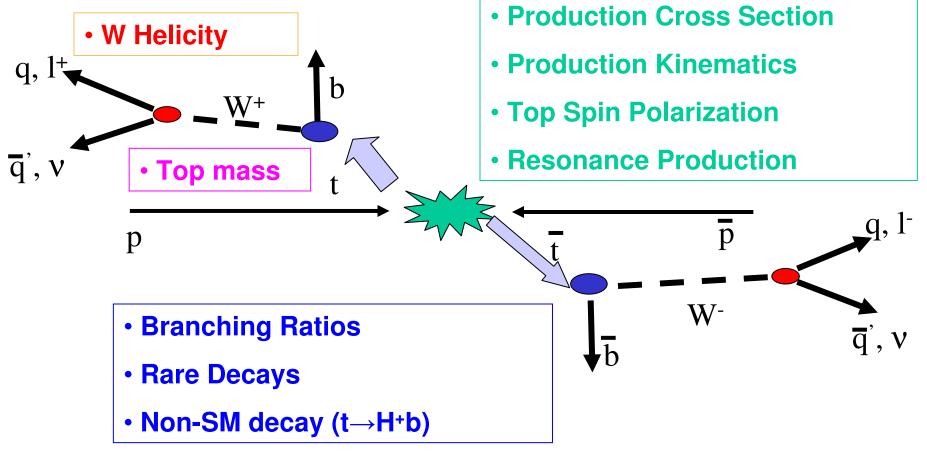
WW, WZ, ZZ production

- First observation of WW production at a hadron collider
- Still searching for WZ
 - TGC Hard to beat LEP with 40k WW pairs
 - Important backgrounds to Higgs search!

CDF
$$\sigma(WW) = 14.3 \pm_{4.9}^{5.6} \pm_{1.8}^{1.8} pb$$

D0
$$\sigma(WW) = 13.8 \pm_{3.8}^{4.3} \pm_{1.2}^{1.3} pb$$

$$\sigma(WZ)$$
 < 15.1 pb @ 95% $C.L$.



Top Physics

Top discovered by CDF and D0 in 1995
Very heavy! Top mass = 178.0 ± 4.3 GeV <
But only ~30 events per experiment
!!!Want more top events to study properties!!!
Run II σ 30% higher at √s=1.96 TeV

Similar mass to Gold atom! 35 times heavier than b quark

Top Production

Top pairs via strong interaction

LHC $\sqrt{s}=14 \text{ TeV}$ 833 ± 100 pb

0.8 events per second at initial/low lumi LHC

Cacciari et al
JHEP 0404:068 (2004)
Kidonakis et al
PRD 68 114014 (2003)

8 200	—	- t
8 18 18 18 18 18 18 18 18 18 18 18 18 18	—	- <u>ī</u>

+

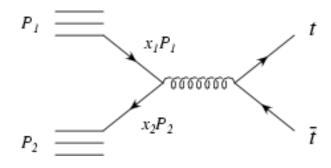
m _t (GeV)	- PDF NLO σ(pb) +PDF		
170	6.8	7.8	8.7
175	5.8	6.7	7.4
180	5.0	5.7	6.3

0.8 events per hour at recent lumi

TeVatron √s=1.96 TeV

Single top via weak interaction

0.88 ± 0.11 pb 10.6 ± 1.1 pb 1.98 ± 0.25 pb 246.6 ± 11.8 pb


Harris, Laenen, Phaf, Sullivan, Weinzierl, PRD 66 (02) 054024 Sullivan hep-ph/0408049 <0.1 pb 62.0+16.6-3.6 pb

Tait, PRD 61 (00) 034001 Belyaev, Boos, PRD 63 (01) 034012

Top pair production

- Why is qq annihilation dominant at the TeVatron but gg fusion at LHC?
- Why does cross section increase by x100 for only x7 increase in √s?

$$X \approx \frac{m_t}{\sqrt{s}/2}$$

$$\sqrt{s} = 1.96 TeV x \approx 0.18$$

$$\sqrt{s} = 14 TeV \quad x \approx 0.025$$

http://durpdg.dur.ac.uk/hepdata/pdf3.html

Top Decay

- BR(t→Wb) ≈ 100% in Standard Model
- Top lifetime 10^{-25} s ($\Gamma(t \rightarrow Wb) = 1.5$ GeV)
 - No top mesons or baryons (Λ_{QCD} =0.1 GeV)
 - Top spin observable via decay products

Final States in Top Pair Production

5% Dilepton

2 leptons

Missing ET

2 b-jets

30% Lepton+Jets 46% All hadronic

Both $W \rightarrow lv$ (l=e or μ) One $W \rightarrow lv$ (l=e or μ)

1 lepton

Missing ET

4 jets (2 b-jets)

Both $W \rightarrow qq$

6 jets (2 b-jets)

Dilepton

Observe 19 lepton/isolated track events in 200 pb⁻¹

Estimated background 6.9 ± 1.7 events

Observe 13 lepton/lepton events in 200pb-1

Estimated background 2.7 ±0.7 events

Dilepton kinematics

Leptons Transverse Momentum

Total Transverse Energy (scalar sum)

Kinematics consistent with Standard Model so far

Missing Transverse Energy

H_T is scalar sum of transverse energies of jets, leptons and MET

Lepton+Jets

Dominant background from W+jets

Go beyond single variable like H_T Combine seven kinematic variables in a 7-7-1 neural network to improve discrimination

Top shape from PYTHIA

W+jets background shape from ALPGEN+HERWIG MC

Observe 519 events
Fit result 91.3 ± 15.6_(stat) top events

$$\sigma(t\bar{t}) = 6.7 \pm 1.1_{(stat)} \pm 1.6_{(syst)}$$
pb

Dominant systematics are

- (1) Jet energy scale uncertainty
- (2) Q² scale for W+jets MC since no well-defined scale for W+jets

b-Tagging: Vertices and Soft Muons

Recall Standard Model t→Wb branching ratio is ~100%

- Every top signal event contains 2 B hadrons
- Only 1-2% of dominant W+jets background contains heavy flavor

Improve S:B by exploiting knowledge that B hadrons

Lepton+Jets: Single vs Double b-tags

Double-tagged events – cleanest sample of top quarks! Separate into 8 subsamples – single or double tag, 3 or ≥4 jets, e or μ

F. Rizatdinova Top/EWK/QCD Friday

$$\sigma(t\bar{t}) = 7.2 \pm_{1.2(stat)}^{1.3} \pm_{1.4(syst)}^{1.9} pb$$
Background estimate
b-tag efficiency

MC issue #1: How to use LO ME?

Leading Order Matrix Element
ALPGEN W,Z+≤6 jets
MADGRAPH W+≤9 jets

Good: Hard/wide-angle

Bad: Soft/collinear (ME diverges)

Interpolation needed! "matching"

Veto hard emissions in Parton Shower that are already accounted for by Matrix Element "avoid double-counting"

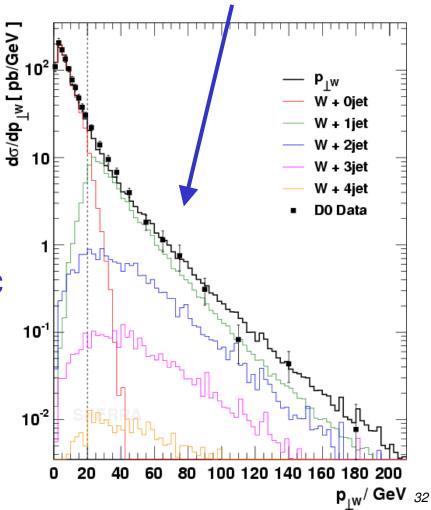
CKKW for e+e- hep-ph/0109231
Adapted to hadron collider
PYTHIA/HERWIG S. Mrenna, P. Richardson hep-ph/0312274
SHERPA F. Krauss hep-ph/0407365
Alternative approach from M. Mangano

F. Krauss
B. Cooper
Top/EWK/QCD Friday

MC issue #1: how to use LO ME?

Leading jet pT in W+≥1 jet

Shape of Matched LO Matrix Element MC


agrees with NLO prediction

Total rate still needs scale-factor

Important for modeling of kinematics at TeVatron and LHC
W+jets for top is like ttbar+jets for VBF

SHERPA F. Krauss hep-ph/0407365

Add matched LO Matrix Element MC from 0 to n partons to obtain inclusive W+jet model!

MC issue #2: how to use NLO?

NLO theory up to W+2jets and Wbb

MCFM J. Campbell, R.K. Ellis http://mcfm.fnal.gov

Calculations still needed

W+3jets (a distant goal)

Inclusion of b mass effects in Wbb

Nagy & Soper, hep-ph/0308127 Giele & Glover, hep-ph/0402152 W. Beenaker et al., hep-ph/0211352 S. Dawson et al., hep-ph/0311216

	Good	Bad	Users
NLO	Hard emissions	Soft&collinear emissions	Theorists
NNLO	Total rates	Hadronisation	
	W+jets Heavy flavour fraction at NLO J. Huston, J. Campbell hep-ph/0405276	No events	
MC	Soft&collinear emissions	Hard emissions	Experimentalists
	Hadronisation	Total rates	
	Outputs events	For example, W+4jets is $O(\alpha_s^4)$ Scale uncertainty of 10% leads to 40% uncertainty on total rate	

MC issue #2: how to use NLO?

B. Webber Top/EWK/QCD Friday

MC@NLO

S. Frixione, P. Nason, B. Webber hep-ph/0305252

Studies with realistic experimental cuts for these processes:

Single vector boson W, Z – no W/Z+jets yet!

Diboson WW, WZ, ZZ

Top pairs

Higgs

Lepton pairs

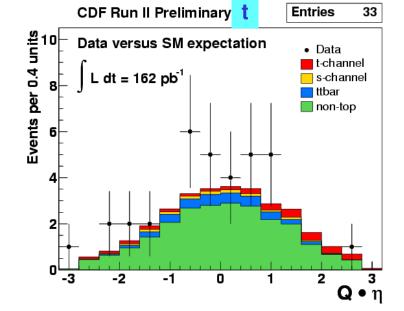
Top acceptance and kinematics at NLO

e.g. p_T of ttbar system at the Tevatron

MC@NLO rate= NLO rate

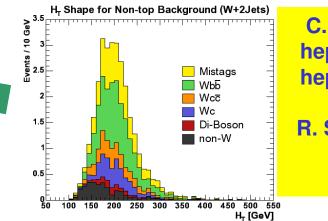
MC@NLO and MC predicted shapes are identical

where MC does a good job


1 Lepton p_T>20 GeV MET>20 GeV

Search for Single Top

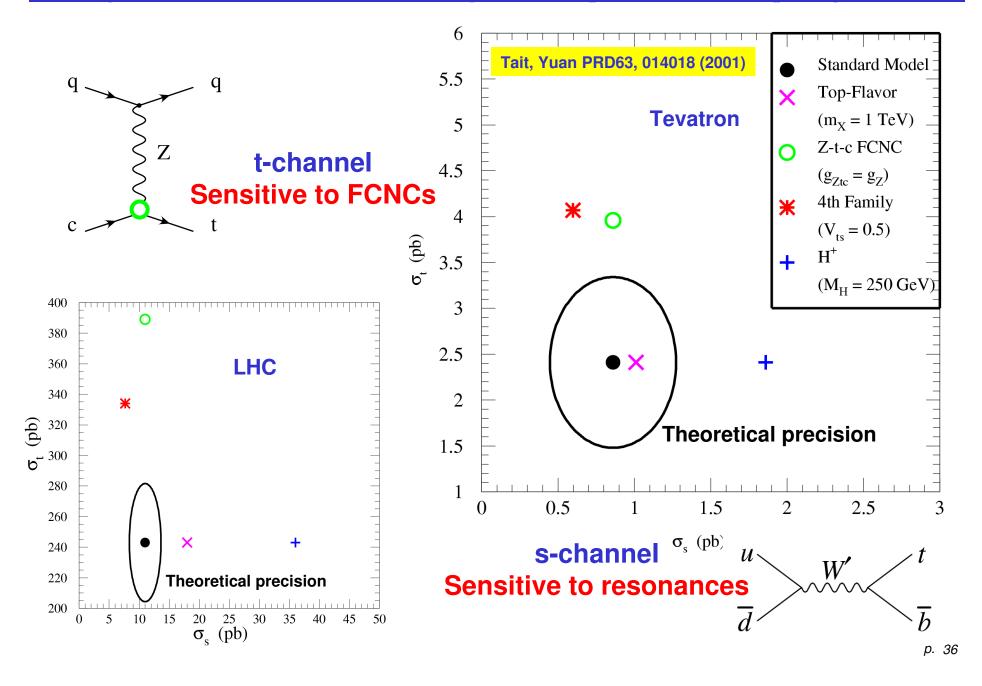
Exactly 2 jets E_T >15 GeV $|\eta|$ <2.8



Single top is kinematically between

W+jets and top pair production NLO calculations for rate and shape very important, especially at LHC

R.K. Ellis, J. Campbell hep-ph/0408158



C.P. Yuan et al hep-ph/0409040 hep-ph/0408180 Q. Cao R. Schwienhorst Top/EWK Thursday

95% C.L. limits Observed (Expected)

Channel	CDF (pb)	D0 (pb)
s+t	<17.8 (13.6)	<23 (20)
t	<10.1 (11.2)	<25 (23)
S	<13.6 (12.1)	<19 (16)

Why search for single top? New physics!

Top cross-sections: Summary

Top Pair Production Cross Section •

Many different measurements

- Test different assumptions
- Compare to look for new physics
- Combination ~20% precision
- Currently statistics-limited

Top Pair Production Cross Section

Top Decay: BR(t→H+b)?

Does top decay to a charged Higgs instead of a W? Compare observed number of events in 3 final states

Helicity of W from top decays

Standard Model is V-A theory: predicts W from top are $F_0=70\%$ longitudinal, $F_{\underline{}}=30\%$ Left-handed

- Assume F₊=0.0 (ie no V+A)
 - Measure F₀

$$F_0 = 0.89 \pm_{0.34}^{0.30} \pm 0.17$$

• F₀>0.25 @ 95% C.L.

CDF Run II Preliminary (162 pb¹)

"Who says it's a fermion?"

Top squark could mimic final state but
W polarisation would be different

- Assume $F_0=70\%$
 - Set limit on V+A fraction
 - F₊<0.269 @ 90% C.L.

Top Charge and tty coupling

Standard Model top charge +2/3 implies t →W b

D. Chang et al

Exotic top charge -4/3, then t→W b instead!

- Examine photon p_T and angular distributions
- Measure ttγ coupling at LHC to 3-10%
 - More difficult at Tevatron due to QED ISR from qq
 - Difficult at e⁺e⁻ linear collider to disentangle ttγ and ttZ

Top Mass: Reconstruction

Lepton+Jets

- Neutrino undetected
 - P_x, P_v from energy conservation
 - 2 solutions for P_z from M_{Iv}=M_W
- Combinatorics of 4 highest E_T jets
 - 12 ways to assign jets to partons
 - 6 if 1 b-tag
 - 2 if 2 b-tags (beware of charm!)
- ISR
 - Extra jets

U.K. Yang
Top/EWK/QCD Friday

- 4 highest E_T jets not always from top decay
- FSR
 - Poorer resolution if extra jet not included or jet clustering leaves no well-defined jetparton match
- Dilepton
 - Lower statistics
 - Two undetected neutrinos
 - Fewer combinations only 2 jets
 - ISR/FSR as above

Final state from LO matrix element

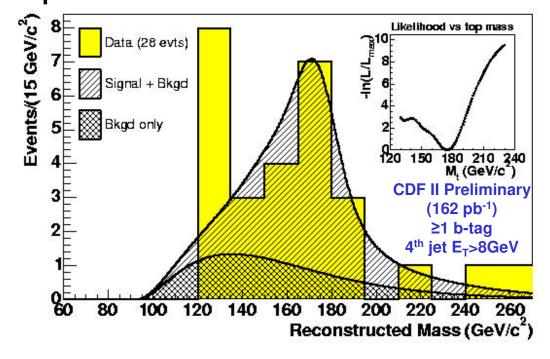
What you actually detect

+underlying event from proton remnants

+ multiple interactions!

Top Mass: MC Template

 $\mathcal{G}(measurement|mtop) =$


 $\mathcal{G}(\mathsf{measurement}|\mathsf{partons}) \times \mathcal{G}(\mathsf{partons}|\mathsf{mtop})$

MC + GEANT detector simulation + reconstruction

- Choose best combination and neutrino solution with a kinematic fit
- Parameterise reconstructed mass shape with MC
- Maximise Likelihood
- Dominant systematic from jet energy scale

 $\mathbf{m_{top}} = 176.7 \pm_{5.4}^{6.0} \pm 7.1 \, \text{GeV/c}^2$

Top Mass: Tevatron Summary

Run II goal is 2.5 GeV per experiment

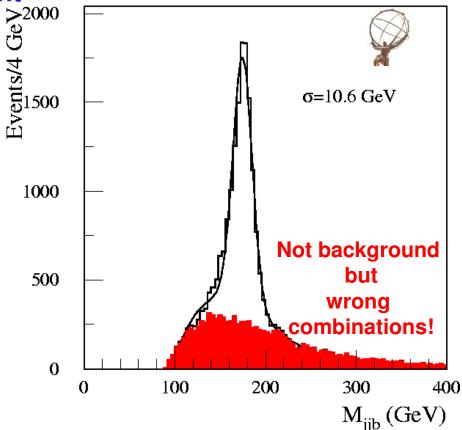
Trying out many different techniques at this early stage

Dominant systematic from jet energy scale

None of the Run II preliminary measurements are in the world average

Jet Energy Scale

- Dominant systematic on current Tevatron top mass measurements.
 Will decrease soon as
 - Simulation improves
 - Get smarter with more statistics
- Absolute energy scale is the key!
 - No J/ψ for jets ⊗
 - Mission impossible to trigger on Z→qq, though trying Z →bb
 - Must tune Calorimeter simulation at single particle level!!!
 - Accurate inner detector material description important
 - Data control samples
 - γ+jet
 - Z+jet
 - di-jet
 - Hadronic W in top events!


Top mass @ LHC

 \geq 4 jets E_T>40 GeV, $|\eta|$ <2.5

- ^{2 b-tags} Much higher statistics...can reduce systematics
 - Double b-tags: reduce background and combinatorics
 - 87,000 top with S/B~78 with 10 fb⁻¹
 - Calibrate jet energy scale in situ using hadronic W decay!
 - b-jets achieve 1% calibration with Z+b?

Precision 1 GeV per experiment

Source of uncertainty	Hadronic δM _{top} (GeV)	$\begin{array}{c} \text{Fitted} \\ \delta \text{M}_{\text{top}}(\text{GeV}) \end{array}$
Light jet scale	0.2	0.2
b-jet scale	0.7	0.7
b-quark fragmentation	0.1	0.1
ISR	0.1	0.1
FSR	1.0	0.5
Combinatorial bkg	0.1	0.1
Total	1.3	0.9
Stat	0.1	0.1

SN-ATLAS-2004-040

Global Standard Model Fit

Changes since Summer 2003

Only use high Q² measurements from LEP, SLC and Tevatron

 $\frac{\text{Theory input}}{\text{Complete two-loop for M}_{W}} \\ \text{hep-ph/0311148} \\ \text{Fermionic two-loop for } \sin^2\!\theta^{\text{eff}}_{\text{lept}} \\ \text{hep-ph/0407317}$

Experimental input
HF combination (LEP/SLC)
W mass combination (CDF/D0 Run I)
top mass (D0 Run I)

Summer 2004

SM constraint on Higgs boson mass

Vital to measure W and top mass well at TeVatron in next few years

Conclusions

Tevatron delivering high luminosities – expect 4-9 fb⁻¹

- More W bosons and top quarks than ever before
- Precision measurements of top properties is it really top?

Interaction with theorists & experimentalists very important

- Modeling hadron collisions to required accuracy is hard!
- Tools/calculations from QCD needed
- Theorists need funding and jobs too!

LHC beam in 900 days

- Sharpen tools for ATLAS/CMS physics with experience/data at CDF/D0
- Funding agencies want to see transfer from Tevatron to LHC
- Graduate students & postdocs need data now to learn analysis skills

Let's get to work in the next year with Tev4LHC!

SM Higgs sensitivity

1 Lepton p_T>20 GeV MET>20 GeV ==4 jets $E_{T}>15$ GeV, $|\eta|<2.0$

Top Mass: Matrix Element

No b-tagging

 $\mathcal{G}(\text{measurement}|\text{mtop}) =$

 $\mathcal{G}(\text{measurement}|\text{partons})_{x} \mathcal{G}(\text{partons}|\text{mtop})_{z}$

GEANT detector simulation + reconstruction

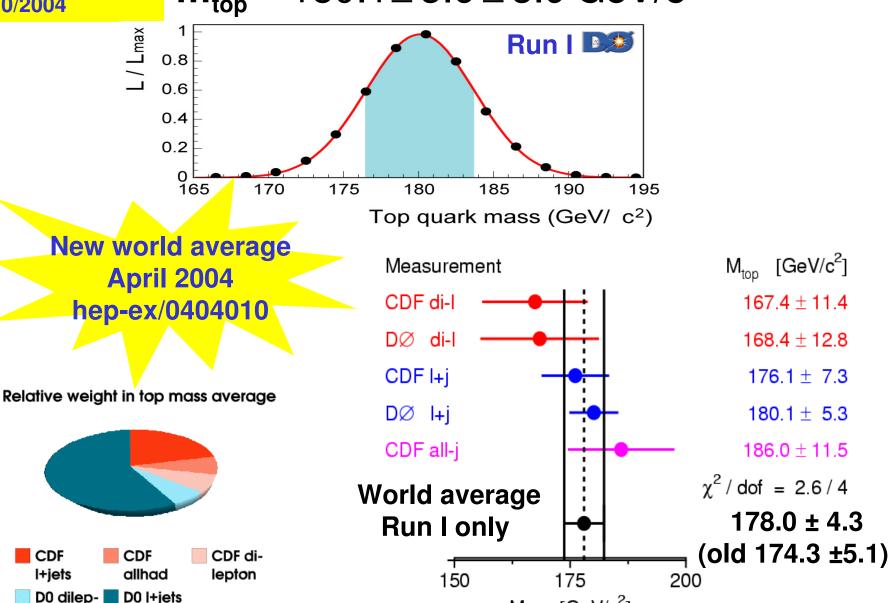
$$P_{t\bar{t}} = \frac{1}{\sigma_{tot}} \int dp_{jet1} dm_{top1}^2 dM_{w1}^2 dm_{top2}^2 dMw_2^2 \sum_{comb,v} W_{jet}(x,y) \frac{f(q_1)f(q_2)}{|q_1||q_2|} \phi_6 |M|^2$$

Updated D0 Run I measurement

- Use LO matrix element...
 - **Exactly 4-jets for final state**
 - **Background from W+jets VECBOS**
- ...but LO matrix element needs partons
 - 20 parameters to describe initial (2) and final state (18)
 - Measure lepton momentum (3) and jet angles (8)
 - **Energy and momentum conservation (4)**
 - Integrate over 5 unknowns
 - Choose W and top masses (4) and a jet momentum (1)
 - Relate poorly-measured jet energies to partons with transfer functions from MC
- **Advantages**
 - Use all 24 combinations correct one always included
 - Well-measured events carry more weight
 - 2x statistical power!
 - Systematic from jet energy scale reduced by 40%

D0 91 events ≥4 jets	Events	(top, bkg)
Template χ ² cut	77	(29,48)
ME ==4 jets	71	(16,55)
ME ==4 jets and \mathcal{G}_{bkg}	22	(12,10)

Top Mass: Matrix Element

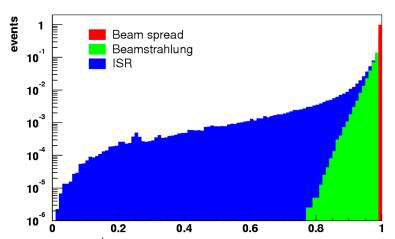

Nature 429 638-642 06/10/2004

CDF

ton

l+jets

 $m_{top} = 180.1 \pm 3.6 \pm 3.9 \text{ GeV/c}^2$



 M_{top} [GeV/c²]

p. 51

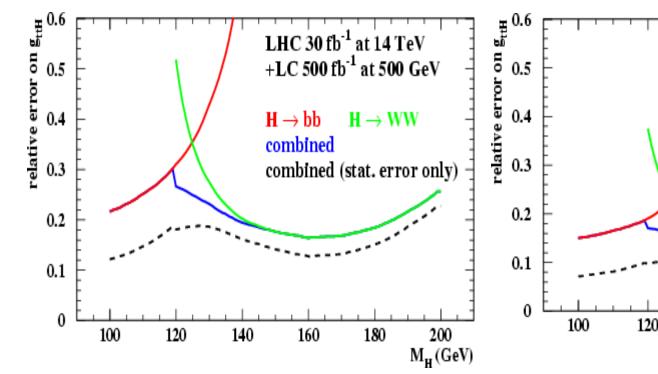
Top mass @ ILC

- Scan cross-section at threshold for top pair production
 - Theory calculation in good shape
 - Choose safe definition
- Ultimate limit of 100 MeV
 - Top carries colour charge, mass not well-defined below 100 MeV

- What is √s? Need to understand
 - Beam energy spread
 - Beamstrahlung
 - D. Miller, S. Boogert http://www.linearcollider.ca/victoria04/

A. Hoang, hep-ph/0310301

K. Desch M. Schumacher hep-ph/0407159


Top Yukawa Coupling

SM prediction is
$$g_{ttH} = \frac{\sqrt{2}m_{top}}{246 \; GeV} = 1.02 \pm 0.02$$

- Important to test coupling between Higgs and top quark
- Combine LHC and LC for model independent measurement
 - LHC: pp \rightarrow ttH+X measure σ (ttH)xBR(H \rightarrow WW) to 20-50%
 - ILC: e⁺e⁻→ZH measure BR(H→WW) to 2%

 $\sigma(ttH) \propto g_{ttH}^2$

Can do with 500 GeV Linear Collider

